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Abstract. In this paper we consider indecomposable representations of the Poincark algebra 
iso(3,l) on  the space R = 0,R-H of its universal enveloping algebra. A master representa- 
tion is obtained on R which induces representations on IC, the invariant subalgebra of 
translations, and on 0- and 0,. These representations are discussed, in particular in view 
of finite dimensional indecomposable representations of iso(3,l). The approach taken is 
analogous to the approach which was chosen by the authors in their analysis of indecompos- 
able representations of the Lorentz algebra so(3, 1). Thus, under restriction of iso(3, 1 )  to 
so(3, 1) the earlier results are recovered. The interpretation of the finite dimensional 
indecomposable representations of iso(3, 1) then follows easily as a coupling of a finite 
number of irreducible so(& 1) representations to an indecomposable iso(3, 1) representa- 
tion, with the dimension of the irreducible representations strictly increasing or strictly 
decreasing. The bases for the finite dimensional indecomposable iso(3, 1) representations 
are explicitly determined, and thus also their matrix elements via the inducing representa- 
tions. A formula for their dimensionalities is obtained. 

The methods employed are purely algebraic and follow the line of work of Jacobson 
and Dixmier. 

1. Introduction 

In this paper we study certain types of indecomposable representations of the Poincart 
algebra iso(3, 1). This work is an extension of our study of indecomposable, as well 
as irreducible, representations of the Lorentz algebra so(3,l) .  Thus, the results obtained 
in [ l ]  for the Lorentz algebra so(3 , l )  will be basic for the study which we carry out 
in this paper. We will follow [ l ]  closely, and in particular use the same notation as 
far as possible. 

In § 2 of this paper we define the master representation of the PoincarC algebra 
iso(3, 1) on the space of its universal enveloping algebra 0, with 0 in a ‘natural basis’ 
(i.e. the basis elements of SZ are taken to be tensor products of the basis elements of 
the algebra iso(3, 1)). The master representation is then reduced to a representation 
on the space R-, still maintaining the natural basis for R-. Here R- denotes the 
subspace of SZ which is spanned by the tensor products of the ‘lowering operators’ of 
iso(3, 1) alone. Finally, we give a representation on a subspace Rk of R, where Rk is 
the enveloping algebra of the translation subalgebra of iso(3, 1). In particular, we will 
obtain formulae for the dimensions of finite dimensional (non-trivial) indecomposable 
representations induced on quotient spaces of n k  with respect to invariant subspaces. 
The lowest dimensions are 5, 14,15,. . . , 
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In 5 3 we reconsider the representation defined on the space a-, and perform a 
change of basis in 0- from the natural basis to an angular momentum basis. This 
angular momentum basis is the basis which is most commonly used in physical 
applications and correspond to the basis used by Gel’fand e? al [2], Gel’fand and 
Ponomarev [3], as well as in part of our analysis of so(3, 1) [l]. 

In 9 4 we discuss certain types of indecomposable representations of iso(3, l ) ,  
making use of the results of 0 3. We will follow closely our discussion of cases A and 
B as given in [ 11. We will obtain, in explicit form, the bases for the finite dimensional 
indecomposable representations which are induced on quotient spaces of 0- with 
respect to invariant subspaces. Again, we will obtain formulae for the dimensions of 
these representations. The lowest dimensions obtained here are 5 ,  8, 11, 13, 14, 14, 
17, 18, 20, 20, .  . . . 

In 0 5 a similar discussion is presented for the case of 0:. The lowest dimensions 
of (non-trivial) finite dimensional indecomposable representations obtained on the 
extended space 0: (for negative integers n) are 7, 10, 13, 16, 17, 19,.  . . . All the finite 
dimensional representations obtained in 00 4 and 5 are in fact representations on the 
extended space 0: (or C l : )  with N, n integers. 

Our work employs purely algebraic methods, as developed by Jacobson [4], Dixmier 
[ 51 and Humphreys [6]. Previous work on indecomposable representations, involving 
different methods, has been carried out by Angelopoulos [ 7 ] ,  Paneitz [8], Raczka [9] 
and Bertrand and Rideau [lo]. 

2. Master representation 

We choose for the PoincarC algebra iso(3,l)  the basis 

Ih3, h+, h-, P3, P+, P-9 ko, k3, k+, k - } .  (2.1) 

The elements h correspond to the (angular momentum) subalgebra so(3), the elements 
h and p to the (Lorentz) subalgebra so(3, l )  and the elements k to the invariant 
(translation) subalgebra K .  

The non-vanishing Lie products are given in this basis by 

[h3, U =  * h ,  [h+, h-]=2h3 

[h3, P*1 = *P* 
[ P3, P*l = Fh*  

[ k 3 ,  h + l =  *k* 

[ko, p*1= -k* 

[ h,, kT] = *2k3 

[h+, P-I = [P+, h-I = 2P3 

[ P+, P-I = -2h3 

[h3, k + l =  *k* 

[P3, k3I = -ko 

[ P*, kz] = -2ko. 

[ P 3 ,  h*l= *P* 

(2.2) 

[P3r kol = k3 

The above relations are valid only if all upper signs or all lower signs are taken 

Another basis which is frequently used in physical applications is 
simultaneously. 

{qw Po : P, v, a = 0, 1,2,31 

[P,, P,I = 0 

[ M p w  M Y P I  = i(g,oM, - g,,M,, + g,,M,, - g,pMa,) 

with Lie products 

[ M ,  v, P* 1 = i (g,, P” - gy*Pp 1 
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where 

gpv = 0 if # U. goo = -g11 = -822 = -g33  = -1 

This basis is related to ours by 

h+=-M2,-iMI3 

h-= -M2,+iM,, k + = - P 2 - i P ,  

h3 = - MI2 

p 3  = MO, 

p +  = MO1 - iMo2 

p -  = MO, + iMO2. 

k-= P2-iP1 

k3 = -iP, 

ko = Po 

We choose the following 'natural basis' for the universal enveloping algebra Cl of 
iso(3, 1 ) :  

f l :  { X ( u ,  m,p, s, n, 4, z, w, t, r ) = p U h m k P p : h ~ k ~ k ; k o w p : h ; ,  U ,  m,. . .EN} (2 .3)  

where the product is the ordered tensor product and X(O,O, . . . , O )  = U denotes the 
identity operator. Apart from the Lie products of [ 13 ,  equation ( 2 . 3 ) ,  taken within the 
universal enveloping algebra of so(3, l ) ,  one needs the following Lie products, taken 
within the universal enveloping algebra of iSO(3, l ) ,  

[ k3 ,  h Z ]  = *mhT- 'k ,  

[ k,, h,"] = *2mh,"-' k ,  - m( m - 1 )  h :-'kT 

[k,, p 3  = 2mp, " - ' k , - m ( m -  l)p,"-*k, 

[ko,pT]=-mpT-- '  k ,  

[h,, k,"] = i m k ?  [h,, k y ]  = rmk,"- 'k ,  (2.4) 

[ h,, k?] = r2mkZ- l  k3 

[ p 3 ,  k,"] = -mk,"-'k, 

[ p F ,  k,"] = -2mkZ-l k, 

[ p , ,  k,"] = mk,"-lk3 

[ p * ,  k,"] = mk,"-'k,. 

Making use of these relations one obtains the master representation p of the PoincarC 
algebra iso(3, 1 )  on the space of its universal enveloping algebra Cl in the natural basis, 
equation (2.3): 

p (h , )X  = X ( r +  1) + ( n  + s i  q - U - m - p ) X  

p ( p 3 ) X  = X ( t +  I ) +  w X ( w  - 1 ,  z + I ) - z X ( z -  I ,  w+ I ) + n X ( s +  1, n - 1 )  

- s X ( n +  1 ,  s -  1)- m X ( u +  1, m - l ) + u X ( u  - 1 ,  m +  1) 

p (  p - ) X  = X (  U + 1 )  

p ( h - ) X  = X ( m +  1 )  

p ( p + ) X  = X ( s +  l ) + u ( u - l - 2 q - 2 n  - 2 s + 2 p + 2 m ) X ( u  - 1 )  

+2psX(  p - 1 ,  s - 1 ,  q+ 1 )  - 2 p X ( p  - 1, w + 1 )  

+ 2 m X ( m  - 1 ,  t +  l ) + 2 m w X ( m  - 1 ,  w- 1 ,  z +  1 )  

- 2 m z X ( m  - 1 ,  z -  1, w+ 1 ) + 2 m n X ( m  -1, s +  1 ,  n - 1 )  
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-2msX(m-1 ,  n + l , s - 1 )  

- m(m - 1 ) X ( u + l ,  m - 2 ) - 2 u X ( u  -1, r +  1) 
(2.5) 

p ( h + ) X  = X ( n +  l ) + m ( - m i  1 + 2 q + 2 n + 2 s - 2 p - 2 u ) X ( m  -1)  

+ 2pX(  p - 1, z + 1) + 2pnX( p - 1, n - 1, q + 1) + 2 m X (  m - 1, r + 1) 

+ 2 u X ( u - l ,  t +  1 ) + 2 u w X ( u  - 1, w - 1 , Z S l )  

-2uzX(u  - 1, w +  1, z -  1 ) + 2 u n X ( u  - 1, n - 1, s +  1) 

-2usX(u  - 1, s - 1, n + 1 ) +  u ( u  - 1 ) X ( u  -2, m + 1) 

p ( k 3 ) X  = X ( z +  1 ) +  n X ( n  - 1, q +  1) - m X ( m  - 1, p +  1) 

p ( k o ) X = X ( w +  1) -sX(S - 1, q +  1) - U X ( U  - 1, p +  1) 

p (  k-)X = X( p + 1) 

p (  k+)X = X( q + 1) + 2 m X (  m - 1, z + 1) + 2mnX(  m - 1, n - 1, q + 1)  

- m ( m -  l ) X ( m  - 2 , p + 1 ) + 2 u X ( u -  1, w + l )  

-2usX(u  - 1, s -  1, q +  1)-  u ( u  - 1 ) X ( u  - 2 , p +  1). 

p ( h + ) l  = p ( p + ) n  = p(k+) l  = p(k3)I = p(ko)'J = 0 

P(h3)U = A l l  P ( P d B =  

Imposing the conditions 

(2.6) 

the master representation, equation (2.5), induces on the space SZ- of the lowering 
algebra with basis 

SZ-: { X ( u , m , p ) = p " h " k P , u , m , p ~ ~ )  (2.7) 

the representation 

p ( h , ) X = ( A , - u - m - p ) X  

p ( p 3 ) X  = A z X  - m X ( u +  1, m - 1 ) +  u X ( u  - 1, m +  1) 

p ( p - ) X = X ( u + l )  

p ( h - ) X  = X ( m  + 1) 

p ( p + ) X  = u ( u  - 1 + 2 p + 2 m ) X ( u  - 1 ) - m ( m  - l ) X ( u + l ,  m - 2 ) + 2 m h 2 X ( m  -1) 

(2.8) - 2 u h , X ( u  - 1)  

p ( h + ) X  = m ( - m +  1 -2p  - 2 u ) X ( m  - 1 ) +  u ( u  - 1 ) X ( u  -2, m + 1 ) + 2 m h , X ( m  - 1) 

+ 2 u h 2 X (  U - 1)  

p ( k3) X = - m X  ( m - 1, p + 1 ) 

p (  ko)X = - u X (  U - 1, p + 1)  

p ( k - ) X  = X( p + 1)  

p ( k + ) X  = - m ( m  - l ) X ( m  - 2 , p +  1)  - u ( u  - 1 ) X ( u  -2,  p +  1). 

It is this representation which will be discussed in detail in the following sections, 
after a change of basis to an angular momentum basis has been performed. 
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The translation subalgebra K is an invariant subalgebra. Thus, we obtain a 
representation on the space f l k  with basis 

R k : { X ( p , q , z ,  w ) = k P k 4 , k ~ k , " , p , q , z , w € N } .  (2.9) 

p(h3)X = ( 4  - P ) X  

p ( p 3 ) X =  w X ( z + l ,  w - l ) - z X ( z - l ,  w + 1 )  

p ( p - ) X  = w X ( p +  1 ,  w - 1) - 2 q X ( q -  1, w+ 1 )  

A representation on this space is obtained as ( p (  h3)U = p(  p3)U = 0,  U = m = s = n = 0 )  

p ( h - ) X  = z X ( p +  1 ,  Z -  1 )  - 2 q X ( q  - 1,  Z +  1 )  

p (  h + ) X  = - z X (  q + 1 ,  z - 1 )  + 2pX(  p - 1 ,  z + 1) 

p ( p + ) X =  w X ( q + l ,  w - 1 ) - 2 p X ( p - l ,  w + l )  

p(  k 3 ) X  = X ( z  + 1 ) 

p ( k , ) X = X ( w + l )  

p (  k - ) X  = X (  p + 1 )  

p ( k + ) X  = X ( q +  1 ) .  

(2.10) 

This representation is infinite dimensional and indecomposable. It contains an 
infinity of invariant subspaces which are nested into each other (composition series). 
It is seen that 

N = N , + N , = p + q + z + w  

N , = p + q + z  

N, P, 4, z, w E N 

remains constant under the action of so(3, l ) ,  while 

NI ,  P, 4, z E N 

remains constant under the action of so(3). Thus, since N = 0 ,1 ,2 ,3 , .  . . for iso(3, l ) ,  
it follows that this indecomposable iso(3, 1 )  representation contains irreducible s o ( 3 , l )  
representations for N = 0, 1 ,2 ,3 , .  . . . Each of the irreducible s o ( 3 , l )  representations 
contains in turn irreducible so(3) representations with a multiplicity 2 1 .  For a given 
value of N the dimension of the so(3, 1 )  representation is 

a( N + 1 ) (  N + 2)( N + 3 ) .  

The action of the invariant subalgebra K always increases the value of N. Thus, each 
value of N defines an infinite dimensional invariant subspace VN of the representation 
equation (2.10), with voEi&. Thus, this representation of iso(3, 1 )  induces on the 
quotient spaces f l k /  V N + l ,  N 2 1, finite dimensional indecomposable representations. 
Still other finite dimensional indecomposable representations are obtained by observing 
that the invariant subspace V, contains the invariant subspace VN, M < N. On the 
quotient space V M /  v N + I ,  M < N, one obtains the finite dimensional indecomposable 
iso(3, 1 )  representations o f  dimension 

dim p ( M ,  N )  = $[( N + 1 ) ( N + 2 ) ( N + 3 ) (  N + 4 )  - M ( M  + 1 ) (  M + 2 ) ( M + 3 ) ]  

N = l , 2 , 3  ,..., M = 0 , 1 , 2  , . . . ,  N - 1 .  
(2.11) 

Note that for M = 0 one obtains the finite dimensional indecomposable representations 
O n  o k !  v N + I .  
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The representations of dimension S 2 0  are 

5 = ( 3 +  1 ) +  1 

where the sums give the so(3, l )  content, with the so(3)  content in parentheses. 

14= ( 5 +  1)+ (3 + 1) + 4  15 = ( 5 +  1 )+(3+  1 ) + 4 +  1 

3. Representations on the ‘lowering’ algebra Cn- 

In this section we perform a change of basis of the space s1- to an angular momentum 
basis and study the representations of iso(3, 1) on the space Cl- in this new basis. 

We define p ( h + )  extrema1 vectors through the condition 

One obtains the following recurrence relations for the coefficients Ckq:  

2A2(N-  4 )  c lq  = - 
212 + 2 - 2 N 

( N  - k - 4 + 2 ) (  N - k- q+ 1) 
c k q  = - c k - 2 , q  - k(2A1- 2 N  + k + 1) 

(3.2) 
2A2( N - k -  q+ 1) 
k(2A1 - 2 N  + k + 1) c k - l , q  

for each q E N. 
The angular momentum basis for Cl- is given by 

{ yEq  = h?’yNq, m E N, q E N, N - q E N}. (3.3) 

Making use of the results of [l], and again applying the process of induction, the 
representations of iso(3, l )  on s1- in an angular momentum basis are obtained as 

p(h3)ymNq = (Al  - N - m)ymNq p(h+)ymNq = m(2Al  - 2 N +  1 - m)ymN;’ p(h-)ymNq = ymNqfl 

p ( p ~ ) y ~ . q = c u , ~ q ( 2 A l - 2 N + 1  - m ) ~ : , : : , ~  

where 
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( N  - q ) (  N -  - l ) [ A i + ( A l +  1 -  N)’] 
8 N q  = (2‘4, - 2 N +  1 ) (2Al -2N+3) (A, -  N +  1)* 

Although these relations were derived on the space Q- with basis equation (3.3), i.e. 
N - q, q, m E N, they are seen to be valid on the extended space Q? for N, q, m E Z 
(though then y N q  loses its former meaning and represents some abstract basis). 

One observes the following properties of this representation. 
( i )  The action of the Lorentz subalgebra so(3,I)  does not affect the parameter q. 

Thus, for fixed value of q the relations (3.3) yield representations of the subalgebra 
so(3, 1) which are identical to the representations which were obtained in [ 11. In fact, 
for fixed q, the substitution 

A 1 - + A I N - q +  N 

brings the so(3, 1) representations as defined above into the form given in [l]. Thus 
the set of basis elements 

{Y“,, q fixed} 

{ Y Z ,  N 3 4). 

corresponds to the so(3, 1) basis of [ 13 

(ii) The action of the translation subalgebra K always increases the value of q by 
1. This then causes an  indecomposability in the parameter q. In fact, the action of 
p ( k , ) ,  p ( k + ) ,  p ( k - )  is identical to the action of the operators p ( p 3 ) ,  p ( p + ) ,  p ( p - ) ,  
respectively, in regard to the indices N, m, while it increases the value of q by 1. The 
action of p ( k o )  does not affect the values N, m but merely increases the value of q by 
1 (see figure 1). This follows from the fact that k+,  k - ,  k ,  are the three components 
of an 1 = 1 angular momentum operator while ko is an  1 = 0 angular momentum operator. 

(iii) The coefficients 6, y differ from coefficients a,  p, respectively, only by certain 
factors, namely 

4. Finite dimensional indecomposable representations 

In this section we want to discuss the representation given by equation (3.4) for certain 
specific values of the parameters ,Il and A2. We are primarily interested in the finite 
dimensional indecomposable representations. These are obtained on certain quotient 
spaces. To obtain the bases for these representations one has to go through the analysis 
of infinite dimensional indecomposable representations following closely our previous 
work in [l]. We refer the reader to [ l ]  and appendices 1 and 2 for a more detailed 
presentation. 

Let us only mention here that finite dimensional indecomposable representations 
arise due to the ‘staircase’ invariant subspaces. For a fixed value of q the elements of 
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Figure 1. T h e  action of p ( k + ) ,  p ( k - ) ,  p ( % ) ,  p ( k , ) .  

an so(3, 1) invariant subspace are the elements y &  which lie above the 'staircase' 
defined by the key equation 2A1 - 2N + 1 - m = 0. Finite dimensional indecomposable 
representations are obtained on the quotient spaces modulo these invariant subspaces. 

It may be useful to consider an example at this point. We choose M = 3, n = 1. 
The union of the sets of elements: {Y;+~ ,  ycT*, y?+,,? m, NEN}, {y::", Y?+~, , ,  m, 
N E N} and V', q = 2,3,4,  . . . , forms a basis for an iso(3,l)  invariant subspace of R- (see 
appendix 2). The quotient space of 0- with respect to this invariant subspace then has a 
basis { ~ ~ o , y ~ o , y ~ ~ , ~ ~ o , y ~ o , y ~ o , y ~ ~ , y ~ l } .  Withrespecttoso(3, 1) this quotient spacecarries 
a six-dimensional ( q  = 0) and a two-dimensional ( q  = 1) irreducible representation while 
for iso( 3, 1) this space carries an eight-dimensional indecomposable representation 
whose invariant subspace is spanned by { y ; ] ,  y : , } .  In explicit form: 

' 3 1 2 0  0 0 0 0 0 0 
0 1 / 2 0  0 0 0 0 0 
0 0 - 1 1 2 0  0 0 0 0 
0 0 0 - 3 1 2 0  0 0 0 
0 0 0 0 1 / 2 0  0 0 
0 0 0 0 0 - 1 1 2 0  0 
0 0 0 0 0 0 1 / 2 0  

, o  0 0 0 0 0 0 - 1 1 2  
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P ( P + ) =  

9 

- 0  i 0 0 - 8 1 3 0  0 0 
0 0 4i/3 0 0 -819 0 0 
O O O i O O O O  
0 0 0 0 0 0 0 0  

0 -2 0 0 5 1 3  0 0 
0 0 0 - 6  0 0 0 0 
O O O O O O O i  

~ 0 0 0 0 0 0 0 0  

P( P 3 )  = 

- 0  3 0 0 0 0 0 0 
0 0 4 0 0 0 0 0  
0 0 0 3 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 1 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 1  

- 0  0 0 0 0 0 0 0 

- 0 0 0 0 0 0 0 0  
1 0 0 0 0 0 0 0  
0 1 0 0 0 0 0 0  
0 0 1 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 1 0 0 0  
0 0 0 0 0 0 0 0  

~ 0 0 0 0 0 0 1 0  

- i /2  0 0 0 0 
0 i/6 0 0 819 
0 0 -i/6 0 0 
0 0 0 -i/2 0 
0 0 0 0 5 1 6  
0 0 0 0 0  
0 - 1  0 0 0 

- 0  0 -2 0 0 

0 0 0  
0 0 0  

419 0 0 
0 0 0  
0 0 0  

-516 0 0 
0 i/2 0 
0 0 -i/2 

P( P - )  = 

' 0 0 0 0  
i/3 0 0 0 
0 i/3 0 0 
0 0 i/3 0 
1 0 0 0  
0 1 0 0  
0 0 0 0  

. o  0 0 0 

0 
0 

41 9 
0 
0 

51/3 
0 
0 

0 0 0  
0 0 0  
0 0 0  

419 0 0 
0 0 0  
0 0 0  
0 0 0  
O i O  
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- 0  0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
1 0 0 0 0 0 0 0  

- 0  1 0  0 2 i I 3 0  0 0 

d k + ) =  

- 
- 0  0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 -2 0 0 2i/3 0 0 

- 0  0 0 -6 0 0 0 0 -  

P(k0)  = 

- 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 - 1  0 O i l 3 0  0 0 

. 0 0 -2 0 0 -i/3 0 0 

0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  
0 0 0 0 - 1 0 0 0  

. o  0 0 0 0 - 1  0 0 

In the evaluation of the matrices we used: 

In a similar manner other finite dimensional indecomposable representations can 
be obtained in an explicit form. In what follows we list the bases, as well as the SO(3, 1) 
content for the representations with small dimensions. 
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For A, = M/2 ,  A2 = *in12 (M, n = 3 ,5 ,7 , .  . . n < M),  case A4 in appendix 1, the 
bases for finite dimensional quotient spaces are given by 

q M I Z , n / 2 , q , ) = { y m N q , q s  N ~ ( M - n ) / 2 , 0 c m ~ M - 2 N , 0 ~ q ~ q c }  (4.1) 

where O < q C < ( M - n ) / 2 .  The number qc signifies the number of q levels (so(3, 1) 
irreducible representations) which occur in the iso(3, 1) representation. 

It is thus seen that to each finite dimensional representation there corresponds a 
triplet of numbers (M/2 ,  n/2, qc). A general expression for the dimensions of finite 
dimensional indecomposable representations of iso(3, 1) will be given shortly. 

Below we list the dimension and the so(3, l )  content of some of the smallest iso(3,l)  
representations (M/2,  n/2, qc) = ( A l ,  -iA2, qc) :  

(3/2,1/2,1) 

( 5 1 2 , 3 1 2 , ~  14=  1 0 + 4 = ( 6 + 4 ) + 4  

(5/2,1/2,1) 1 8 = 1 2 + 6 = ( 6 + 4 + 2 ) + ( 4 + 2 )  

(712,512~1) 20= 1 4 + 6 = ( 8 + 6 ) + 6  

(5/2,1/2,2) 

(9/2,7/2,1) 2 6 = 1 8 + 8 = ( 1 0 + 8 ) + 8  

(7/2,3/2,1) 28= 1 8 + 1 0 = ( 8 + 6 + 4 ) + ( 6 + 4 )  

(7/2,1/2,1) 32 = 20+ 12 = (8 + 6 + 4 +  2) + ( 6 + 4 +  2) 

(712,312~2) 32=  1 8 + 1 0 + 4 = ( 8 + 6 + 4 ) + ( 6 + 4 ) + 4  

(11/2,9/2,1) 

8 = 6 1 2  = (4+ 2) + 2  

20 = 12 + 6 + 2 = (6 + 4 +  2) + (4+ 2) + 2 

32 = 22+ 10=  (12+ lo )+  10 

etc. 

for the finite dimensional quotient spaces are given by 
For A,  = M, h2 = *in (M, n = 1,2,3,  . . . , n < M ) ,  case B3 in appendix 1, the bases 

q M , n , q , )  = { y & ,  s N s M - n, 0 s  m c 2M -2N, 0 s  q s qc} (4.2) 
where 0 s qc s M - n. The value qc again gives the number of q levels which occur in 
the iso(3, 1) representation. 

The few lowest dimensional representations obtained this way are listed below with 
(M, n, S c )  = (Ai ,  -iA2, q c ) :  

(1,031) 5 = 4 + 1 =  (3+ l ) + l  

(291, 1) 11 = 8 + 3  = (5+3)  + 3  

(2,0,1) 13 = 9 + 4  = (5 + 3 + 1) + (3 + 1) 

(290, 2) 1 4 = 9 + 4 +  1 = (5+3  + 1)+(3+  I ) +  1 

(3,291) 17=  1 2 + 5 = ( 7 + 5 ) + 5  

(473, 1) 23= 1 6 + 7 = ( 9 + 7 ) + 7  

(3,1,1)  

(3,0,1) 25= 1 6 + 9 = ( 7 + 5 + 3 + 1 ) + ( 5 + 3 + 1 )  

(3,1,2) 26 = 15 + 8 + 3  = (7 + 5 + 3) + (5 + 3) + 3 

23 = 15 + 8 = (7 + 5 + 3) + (5 + 3) 
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(3,092) 29= 16+9+4=(7+5+3+1)+ (5+3+1)+ (3+1)  

(5 ,4,1)  

(3,093) 

29 = 20+ 9 = (1 1 + 9) + 9 

30=  1 6 + 9 + 4 +  1 = ( 7 + 5 + 3 + 1 ) + ( 5 + 3 +  1) = 1 

etc. 
One may notice that the formulae for the PoincarC algebra representations derived 

on the basis yEq for m, 4, N E N  and N 2 q can be extended to all integral values of 
m, q and N. Our original space R -  then becomes an invariant subspace of a certain 
abstract space 0. on which the analysis can be developed. In our geometrical picture 
R F would correspond to Z x Z x Z. 

5. Representations on the ‘raising’ algebra 0, 

In order to obtain the representations p’  of iso(3, l )  in the angular momentum basis 
we choose as the basis for R the ordered set: 

(5.1) 

a: Y(s ,  n, 4, U, m, p ,  z, w, 4 r )  

= p : h : k ~ p u h l ” k P k ; k , w p ; h ; ,  s, n, 4, U, m,p,  z, w, t ,  r E N } .  

The basis for R+ then becomes 

0,: { U s ,  a, 41, s, n, 4 E N }  

where 

Y(s ,  n, 4 )  =p;h:k:. 

The basis X for R _  goes over into the basis Y for R+ under the Lie algebra 
automorphism 

h3+ -h, h++ h-  h-+ h,  

P3 + -P3 P++P- P - + P +  

k3+ -k3 k + +  k- k- + k+ 

ko + ko. 

The representations p‘  of iso(3,l)  on R and R+ are then obtained from the representa- 
tions p by the substitution 

(AI, A21 --* ( - A , ,  -A21 

and 
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Representation on a+: 
n + l  

p ’ ( h 3 ) y k p  = ( N +  n + p ’ ( h + y k p  = y N p  

p ’ ( h - ) y k p =  n ( - 2 A l - 2 N - n + l ) y k i 1  

p ’ ( p 3 ) y k p  = - a N P ( - 2 A 1 - 2 N -  n + l ) y k + ~ l , p + P ~ p ( A l + N +  n ) ~ k ~ + n y k - d ~ , ~  
n + 2  P ’ ( P + ) Y k P  = a N p y N - l , p + P N p ~ k ~ l + y k + l . P  

p’ (  p - ) y h p  = -a,(-2Al - 2 N  - n + 1)(-2Al  - 2 N + 2 -  n ) y k - _ , , ,  

+ ~ N p n ( - 2 A , - 2 N - n + l ) y ~ ~ ’ - n ( n - l ) y ~ ~ ~ l , p  

p ’ ( k - ) y ” N , =  - S N p ( - 2 A 1 - 2 N - n + l ) ( - 2 A 1 - 2 N - n + 2 ) y k - 1 , p + l  

+ n y N p ( - 2 A l - 2 N - n + l ) y ~ ~ ~ + l - n ( n - l ) y ~ ~ ~ l , p  
n -2 

P’(k+)YnNp = 8 N p Y N - l . p + l +  YNPY”hitpl+l + Y k ~ l . p + l  

p ’ ( k 0 ) y k p  = -(N-P)Yk.ptl 

p ’ ( k 3 ) y k p =  - ~ N p ( - 2 A 1 - 2 N - n + 1 ) y k ~ ~ 1 , p + l - ~ - ~ ~ l - ~ - ~ ~ y ~ p y k , p + l + ~ y k ~ ~ ~ , p + ~  

(5.4) 

where 

[A;+ (1 - A l  - N ) * ] (  N -p ) ( -2A l  + 2 - N - p )  
C U N p = ( - A l +  1 - N)’(-2A1 - 2 N + 3 ) ( - 2 A 1  - 2 N +  1 )  

( N - p ) ( N - p  - l ) [ A i + ( - A l - N +  I ) ’ ]  
= ( -2A1 - 2 N +  1)(-2A1 - 2 N  + 3 ) (  -Al  - N +  112 

When restricted to the so(3, 1 )  subalgebra, one obtains the representations of so(3, 1 )  
which were discussed in [ 2 ] .  Further analysis o f  the above representations is analogous 
to the analysis given for the Lorentz algebra. Equations (5.4) also hold on the extended 
space SZ:, N, p ,  n E Z. 

Following the methods which were employed in § 3 ,  one obtains the bases for finite 
dimensional quotient spaces for A1 > 0, -iA2> 0, half-integers (case A): 

T ( M / ~ , ~ / ~ . ~ , )  ={ymNq, q <  N < f ( n  - M ) ,  - M  - 2 N i  1 G m < O , O <  q <  qc} 

M ,  n = 3 , 5 , 7 , .  . . , n >  M ,  O s q , s i ( n - M )  
( 5 . 5 )  

and for A l  > 0,  -LAz > 0 integers (case B): 

T ,  M,n,q,) = { yZq ,  q G N i n - M,  -2 M - 2 N + 1 < m < 0,O s q s qc} 

M , n = l , 2 , 3  , . . . ,  n > M ,  O s q , s n - M .  
(5.6) 
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In the following a few examples with lowest dimensionalities are shown: 

(MI23 nI2, qc) = ( A I ,  - i -42,  Sc) 

R Lenczewski and B Gruber 

(case A) 

10 = 6 + 4 = (2+4) +4  

16= 10+6=(4+6)+6 

22= 12+10=(2+4+6)+(4+6) 

22 = 14+ 8 = (6+ 8) + 8 

28 = 12+ 10+6= (2+4+6)+(4+6)+6 

28 = 18+10= (8+10)+10 

32 = 18 + 14 = (8 + 6 + 4) + (8 + 6) 

(case B) 

7 = 4+3 = (1 +3) + 3  

13 = 8 + 5  = (5+3)+5 

17 = 9+ 8 = (1 + 3 + 5) + (3 + 5) 

19=12+7=(5+7)+7 

22 = 9+8+5 = (1 +3+5) + (3 + 5)+ 5 

25 = 16+9 = (9+7)+9 

27 = 15 + 12 = (3 + 5 + 7) + (5 + 7) 

A general formula for the dimensions of the finite dimensional indecomposable 
iso(3, 1) representations on Cl- and Cl: can be obtained. It is given as 

4>t , , , t2 ,qc )  = * b ( ~ c +  l ) (qc+ 2)(+6Ai-4qc+ 3)*(qc+ l)[(*Ai - qC)'+ A:)] (5.7) 

where the upper sign corresponds to CL and the lower sign to a:. 
One has to remember that the above holds only for those values of AI,  A*, qc that 

give finite dimensional indecomposable iso(3,l) representations. For qc = 0 we get 
back the formula for the case of the Lorentz algebra. 

6. Summary 

Starting from the master representation for the PoincarC algebra, we obtained finite 
dimensional indecomposable iso( 3 , l )  representations on the translation subalgebra K 
with dimensions 5, 14, 15, . . . , as well as on the 'lowering' algebra and the 'raising' 
algebra Cl: with dimensions 5, 7, 8, 10, 11, 13, 13', 14, 14', 16, 17, 17', 18, 19, 20, 20', 
22,22', 22", 23,23', 25, 25', 26, 26', 27,28,28', 28", 29, 29', 30,. . . . The general formulae 
for the dimensions are given by equations (2.11) and (5.7), respectively. The so(3, 1) 
content was calculated for the representations with dimensions listed above. Moreover, 
the bases for the finite dimensional representations were obtained in an explicit form. 
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As far as infinite dimensional indecomposable iso(3, 1) representations are concer- 
ned, we confined ourselves to an example treated in appendix 2. The reader unfamiliar 
with the method we have used is referred to the simpler case of the Lorentz algebra 
treated in [l] .  

Appendix 1 

In order to analyse the indecomposable representations in detail, one has to pay 
particular attention to those coefficients (Y ..., p ..., y ..., S ..., that vanish as well as to those 
that become singular. The same cases as in [ l ]  will be discussed. 

In what follows N stands for non-negative integers, N' for positive integers and 
N,'d for positive odd integers. 

Case A 

A,  = M/2, A2 = in/2, M, n E N:dd. 

(Al )  AI=1/2, A2 =i/2 (M = n = 1). 

The vanishing coefficients are all, yJJ, SJJ, 
figure 2). 

j = O ,  1,2 , .  . . , and ala, ( ~ 2 0 ,  a21 (see 

('42) A1=M/2, A2 = *iM/2, M E N , f d  and M 2 3 .  

The vanishing coefficients are all, yJJ, S,,, S I + ,  J ,  j = 0, 1,2, . . . , and 8 N q ,  ( Y N ~  for N = 
M + 1, N = 1, aNq for N = M + 2 - q. The singular bands mentioned in [ 11 are present 
here, namely for N = (M + 1)/2, N = (M +3)/2 and q small. More precisely, sin- 
gularities for N = (M + 1)/2 occur if q < ( M  + 1)/2 and singularities for N = (M + 3)/2 
occur if q < ( M  + 3)/2. 

(A3) A l = M / 2 ,  A2 = *i/2 ( n  = 1, M E N(ofd, M 3 3). 

The vanishing coefficients are all, r,, SJJ, j = O ,  1,2 , .  . . , and aNq, S N q  for 
N = 112 + M / 2  + 1 and q arbitrary, aNq for N = M + 2 - q. 

The singular bands appear for N = (M + 1)/2 and N = (M + 3)/2. Then the order 
of limits for the parameters involved becomes of importance (see [ 11). In the following 
we confine our discussion to the case where the order of limits is taken in such a 
manner that aNq = S N q  = 0. This is always possible. For this case (as for case (Al))  
the 'staircase' invariant subspaces of so(3, l )  occur as discussed in [l]. These are 
independent of the parameter q. For fixed value of q the elements of an invariant 
subspace of this kind are all y"N, that lie above the 'staircase' defined by the equation: 

2A, - 2 N  + 1 - m = O  

(see figure 3). It is the quotient spaces modulo these invariant subspaces which lead 
to Jinite dimensional indecomposable representations of iso(3,l). 

(A4) A l = M / 2 ,  A2 = i n / 2 ,  M , n = 3 , 5 , 7  , . . . ,  n < M .  

The vanishing coefficients are all, S,,, y,], SI+ ,  J ,  j = 0, 1,2, . . . , and aNq, S N q  for N = 
*n/2+ M / 2 +  1, aNq for N = M + 2 - q. The singular bands occur for N = (M + 1)/2, 
N = ( M  + 3)/2. 
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N 

N 2 0 1 1 
4 

t -+ 
1 

6 m  

Figure 2. A sequence of invariant subspaces for the first few 9 (9  = 0, 1 , 2 , 3 )  for case ( A l ) .  

Description: - moving down for fixed 9 forbidden, fj+-,$+j++ moving down for 

fixed 9 and q greater by 1 forbidden, moving down for 9 greater by 1 forbidden, 

moving down for fixed 9 forbidden and moving only up allowed for q 

LI =o, S =o a = O  

S=O 

a = O . S = O ,  y = o  

greater by 1. 

Case B 

A I  = M ,  A2 = *in, M,  n E N .  

( B l )  A I = A 2 = 0  ( M = n = O ) .  

The vanishing coefficients are cy#, a,, 
The case when j = 1 takes care of the coefficients that may become singular, namely 
~ I I ,  QIO,  611, 610, Pw, PIO, P I I ,  YW,  Y I O ,  Y I I .  Without explicitly listing the limits of the 
parameters involved we find the sets of self-consistent values as follows: 

j = 0 ,2 ,3 , .  . . ( xcept when j = l ) ,  and 

0 1 1  "lo 611 SI0 Po0 P l O  P11 Yo0 YlO Yl1 
~ ~~~ ~ 

I 0 CO 0 0 00 a2 0 0 CO 0 
I 1  a2 a2 a2 a2 00 a2 W m W a2 

0 0 0 0 0 
I I 0 0 i 0 

I11 0 -1 0 0 0 
IV 0 0 0 0 
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M - 1  

2 4 6 8  2 4 6 8  

I I 9 ' 4  q.5 

Figure 3. Case (A3) for M = 7 can be viewed as a representative picture for any M. 

Cases I11 and IV yield distinct iso(3,l)  indecomposable representations and representa- 
tions induced on quotient spaces can be extracted from them in the usual manner. 

( B 2 )  A l = M ,  A2 = *i M, M E N + .  

The vanishing coefficients are aNq for N = q, N = 2 M  + 1 ,  N = 1, N = 2M + 2 - q, 6, 
for N = q, N = 2M + 1, N =  1 ,  N =  q +  l ,pNq for q = M +  1, yNq for N = q. Singularities 
occur for N = M + 1 and N = M. 

( B 3 )  A , = M ,  A> = kin ,  M<N+, n s M .  

The vanishing coefficients are aNq for N = q, N = 2 M  + 2 - q, N = n + M + 1, 8, for 
N = q, N = q +  1, N =  n + M +  1, p N q  for q = M +  1 ,  yNq for N =  q. Singularities occur 
for N = M + l ,  N = M .  

Appendix 2 

Using the result given in appendix 1 one can proceed with the analysis of the infinite 
dimensional indecomposable representations of iso(3,l). Since in this paper we 
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concentrate on finite dimensional indecomposable representations, we will only give 
an example of such analysis in case A l .  

We introduce the following subspaces: V4 = { ~ y + ~ , ~ ,  N, m E N} where q E N. Each 
subspace V4 corresponds to the space R- of so(3 , l )  in [l], equation (4.18), and thus 
each subspace Vq carries so(3 , l )  representations as was described in [ 11. If the integer 
values of q are plotted along the z axis of a coordinate system, then the basis elements 
of each space V4 can be considered to lie in a plane which is parallel to the xy plane 
and has a corresponding integral coordinate q on the z axis. Furthermore, the integral 
values of m and N + q will be represented by integral coordinates on the x axis and 
y axis, respectively. Then to each point ( m ,  q + N, q )  of this integral coordinate system 
corresponds a basis vector of the space R- of iso(3,l)  for m, q + N, q E N. It is noted 
that, as the value of q increases by 1, the minimal value of q+  N is shifted by 1 in 
the y direction. 

From equation (3.4) it follows that the action of the operators p of iso(3, 1) on 
Y Y + ~ , ~ ,  for N = 0, maps these elements either on other elements of V9 (the action of 
the so(3, 1) subalgebra) or on elements yy~ l+N,9+ l  of V9+'. The latter is true since 
a,, = yss = 0 and since p ( k , )  maps these elements to zero. Moreover, since 89+l,q = 0, 
the elements yqmtl+N,9, for N = 0 ,  are either mapped onto elements of the space V4 
(the so(3, 1) subalgebra) or onto linear combinations of elements yy+l+N,q+l and 
yq+z+N,q+l (again N = 0) of V4+'. It is then easy to realise that the space " 

v = u v q  (qEN) 
4 

forms a space which is invariant (but not irreducible) with respect to the action p of 
the representation equation (3.4). In fact, equation (4.2) gives a decomposition of R- 
with respect to so(3, l )  invariant subspaces. Each of these so(3, 1) invariant subspaces 
exhibits the properties of the so(3, l )  representations discussed in [ 13 for the appropriate 
choice of parameters A I ,  Az. 

In addition to the subspaces V4 of R- we introduce the subspaces 

V;+R = {yY+ll+r,q, r 3 R, E 

where q, R E N. The spaces V i + R  form subspaces of the spaces Vq.  They are obtained 
from the spaces V4 by deleting the basis elements y;+N,q for N = 0, 1, . . . , R - 1. In 
particular, V; = V4. These subspaces will be needed in what follows. 

Below we will list iso(3, 1) invariant subspaces of L: 

n-= f l u  v:u v:u ...=U v; 

w l = q u v : u v :  . . .  
w , = ~ u v : u v :  . . .  
w,= CV v:u v: 
w ,=quv :uv :  . . .  
w , = ~ u v : u v :  . . .  
w, = U v: U v: . . . 
w,= v ;u  v:u v:. . . 

9 
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w, = v: U v: U v: . . . 

19 

There are infinitely many of them. Making use of those invariant subspaces one can 
construct infinitely many quotient spaces. These quotient spaces carry infinite 
dimensional indecomposable iso(3,l)  representations. For example (the slash \ 
denotes the difference of sets), 

TA = fl-/(fl-\ G) = G 
Ti=fl-/(fl- \G\Vi)= Gu Vi 

Ti=fl_/(R-\G\Vi\V:)= @ U  V:u V: 

etc, 

Ti = Wl/( Wl\ e) 
T:  = Wl/( W,\ e\ V ! )  V u  Vi 

etc. 
These quotient spaces have, in turn, invariant subspaces. We choose T i  as an 

example. Its invariant subspaces are L1 = C u  V : ,  L2 = f l u  Vi, L, = e u  V : ,  L4 = 
fl U Vi, L5 = eu Vi, L6 = e u  Vi, L7 = V i ,  L, = Vi. In addition there exist the 
invariant subspaces (due to the existence of the non-trivial p (  h , )  extrema1 vector y i ) ,  
L9= L u  L1, L l o =  L u  L2, L I 1 =  L u  L,, L I 2 =  L u  L4, L I 3 =  L u  L,, where L =  
{yi;"', m E N}. The quotient spaces of Ti  are then 

(1) T i / (  q U Vi) {y& m E N} carrying an infinite dimensional indecomposable 
so(3) representation with highest weight 1/2, 

(2) T i / (  eu V : )  = { y &  y;"o, y;"l, m E N} carrying an infinite dimensional indecom- 
posable iso(3, l )  representation with its so(3) content consisting of infinite dimensional 
irreducible representations with highest weights -1/2, - 112 and the so(3) indecompos- 
able representation with highest weight 1/2, 

(3) T i / (  f l u  V i )  = { y &  y;,  y;, yl?, m E N} carrying an infinite dimensional 
indecomposable iso( 3 , l )  representation with its so( 3) content consisting of infinite 
dimensional irreducible representations with highest weights -1/2, -1/2, -312 and 
the so(3) indecomposable representation with highest weight 1/2. 

The analysis of other quotient spaces is similar. One obtains infinite dimensional 
irreducible and indecomposable iso( 3 , l )  representations, whose so(3) content can be 
determined in a straightforward manner. We confine ourselves to a listing of all 
remaining quotient spaces of T i :  

(4) Ti/( f l u  v:, =MI, y;, m E NI 
( 5 )  Ti/( e u  v:, ={(Yo"o, Y;"o, Y G ,  m E N I  

(8) Ti/( cu Vi) = {Y& YK, m E N I  
(9) 7% L9 = I Y O O ,  Y A O I  

(10) ~ i / ~ l ~ ~ ~ ~ o o , ~ ~ ~ ~ ~ ~ ~ ~ ,  m E N )  
(1 1) T i / L l l  = {yoo, Y ~ I  U { ~ ; " o ,  YE, m E NI 
(12) Ti/L12~{Yoo,Y~o}u{Yz, 
(13) ~ i / L 1 3 = { Y o o , Y ~ ~ u  e. 

( 6 )  T i /  V i =  G 
( 7 )  T $ V i =  Gu{yz, m E N }  

The representation induced for case (9) is finite dimensional, but trivial ( p ( k )  = 0). 
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